Convex Functions on Grassmannian Manifolds and Lawson-osserman Problem
نویسندگان
چکیده
We derive estimates of the Hessian of two smooth functions defined on Grassmannian manifold. Based on it, we can derive curvature estimates for minimal submanifolds in Euclidean space via Gauss map as [24]. In this way, the result for Bernstein type theorem done by Jost and the first author could be improved.
منابع مشابه
Higher Order Jordan Osserman Pseudo-riemannian Manifolds
We study the higher order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and nontrivial examples of higher order Osserman manifolds. Subject Classification: 53B20. PACS numbers: 0240, 0...
متن کاملPlurisubharmonicity in a General Geometric Context
Recently the authors have explored new concepts of plurisubharmonicity and pseudoconvexity, with much of the attendant analysis, in the context of calibrated manifolds. Here a much broader extension is made. This development covers a wide variety of geometric situations, including, for example, Lagrangian plurisubhamonicity and convexity. It also applies in a number of non-geometric situations....
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کامل2 00 8 Plurisubharmonicity in a General Geometric Context
Recently the authors have explored new concepts of plurisubharmonic-ity and pseudoconvexity, with much of the attendant analysis, in the context of calibrated manifolds. Here a much broader extension is made. This development covers a wide variety of geometric situations , including, for example, Lagrangian plurisubhamonicity and con-vexity. It also applies in a number of non-geometric situatio...
متن کاملNilpotent Spacelike Jorden Osserman Pseudo-riemannian Manifolds
Pseudo-Riemannian manifolds of balanced signature which are both spacelike and timelike Jordan Osserman nilpotent of order 2 and of order 3 have been constructed previously. In this short note, we shall construct pseudo-Riemannian manifolds of signature (2s, s) for any s ≥ 2 which are spacelike Jordan Osserman nilpotent of order 3 but which are not timelike Jordan Osserman. Our example and tech...
متن کامل